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1. Introduction

Strong transitivity in random dynamical systems (RDS) represents a fundamental extension of topological
transitivity to stochastic frameworks. While classical dynamical systems theory has well-established
characterizations of transitivity, the random counterpart requires careful consideration of both topological
and measurable structures. This paper establishes three pivotal contributions:

Before studying strong transitivity of random dynamical systems, we will give some priorities and
definitions of random dynamical systems and start from dynamical systems [5]. where the a pair (X, 8) is
dynamical systems, where X is a Hausdorff topological space and 8: R X X’ — X is a mapping such that

(i) @ is continuous;
(i) 6(0,x) = x forallx € X ;
(iii) 8(t +s,x) = 0(t,0(s,x)) V,t,sE R x € X.
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We further recall the definition of metric dynamical system[2]where the metric dynamical system is a 5-
tuple (T, Q, F, P, 0)

if (Q, F, P) is a probability space and

)] 6:Tx Q- Qis (B(T) ® F,F) —measurable,

(ii) 0(0,w) =w, Vw €N

(ili) 6O(t+s,w)=0(t,0(s,w)) V,t,s€T,w € Q

(iv) P(6,(F)) =P(F) ,foreachF € F and foreacht €T.

In short, we will write that (6:T X Q — Q) to 6w or 6(t, w)
We also remember the definition of Random Dynamical System [3] (Shortly RDS) where a

measurable RDS on the measurable space (X,B(X)) over metric dynamical system (T, Q,F,P,8) , with
time is mapping ¢: T X Q X X — X, having these properties:

1) Measurability, ¢ is B(T)@F @B, B — measurable.
2) (Cocycle property) : The mappings ¢(t, w) = ¢(t,w,"): X - X form a cocycle over 6(-),
i. e. they satisfy ¢(0,w,x) = x forallw € 2 (if 0 € T)
p(t+s,w) =@t 0(s)w)e (s, w)forall s,t eT,w € N
We will write the RDS is denoted by (8, ¢) rather than (T,Q, X, 6, @)

Definition(1.1):[8] Trajectories

Let D: w = D(w) be a measurable multifunction. We define the pullback trajectories emerging from D (from
time t onward) as the multifunction:
w — yj(w)given by:
V5 (@) = Ugzr 9(k, 0_,0)D(0_ )

Special Case (Single-Valued Version):
When D(w) = {v(w)}is single-valued, we denote:
w — Y (w) = vp(w) = Ukzo @ (k, 0_0)v (0, w)

and call this the pullback trajectory (or orbit) emanating from .
Definition (1.2): [8] omega-limit set

Assume D: w ~ D(w) be a multifunction. The omega-limit set is the multifunction of trajectories emanating
from D (pull back),

© = Tp(@©) = Neso Y5 (@) = Neso Urar 9 (k, 0-)D(0-0)
if D(w) = {x(w)} ,is single valued function
Then w +— T, (w) is called the (pull back ) omega-limit set of trajectory (or orbit) emanating from x.
2. Strong transitivity: The following definition captures strong transitivity for random dynamical systems.

Definition (2.1): A RDS (6, ¢)on X is said to be a strong transitivity, if for each non-empty random open
sets U(w) and V(w) of X, there is k{, k, € N such that

@(ky,0_i, 0)U(w) N @(—kz, w)V(w) # 0.
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The following definition formalizes a strengthened notion of density for random subsets, ensuring non-
empty intersection with all random open sets in the state space.

Definition (2.1): Strongly dense set

A random sub set ¢(—k, w)V(w) of X is said to be a strongly dense set of X, if o(—k, w)V(w) N U(w) # O
for each non-empty random open set U(w) of X.

Main results :Strong transitivity systems have strongly dense.

Theorem (2.2) : if (6, ¢) is strong transitivity, then ¢(—k,, w)V(w) is a strongly dense set of X for each
non-empty random open set U(w) c X.

proof : Let (8, ¢) is strong transitivity, then ¢k, 0_,, w)U(w) N @(—k;, w)V(w) # @ for each non-empty
random open sets U(w) and V(w) of X, thereis k;,k, €N,

since U(w) < @(kq, 0_k, @)U(w),50 U(w) N p(—k,, w)V(w) # @,there fore p(—k,, w)V(w) is strongly dense
set of X.

Theorem (2.3):

Let (6, @) be a RDS. The following statements are equivalent:

1) (8, @) is a strong transitivity.

2) For each non-empty random open set V(w) of X, Ugeni®@(—k, w)V(w) } is strongly dense set of X.
Proof:

(1) = (2) Assume that (6, @) be a strong transitivity RDS. From transitivity of (8, ¢), implies that for every
random open sets U(w) and V(w) of X there are k4, k, € N such that:

@ k1, 0k, w)U(w) N @(=kz, @)V (w) # @
P(=kq, @) o p(kq, 0_g, 0)U(w) N @(=kq,w) ° 9(=kz, )V (w) # @
(kg + =k, 0_p, 0)U(w) N @(—ky, w) 0 =k, + —ky, )V () # @
Let —k, + =k, = —k3
U(w) N @(—k3, w)V(w) = D
Ukzen{o(—ks, 0)V(w)} N U(w) # @
Then from definition strongly dense set we have
Uk,en{@(—ks3, w)V(w) } is strong dense set of X.
(2)=(@1)
Let V(w) € X be an random open set we have ,

Urkenio(—k, w)V(w) }is strongly dense set of X
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Let U(w) be any random open set subset of X

Then there exists k; €N such that ¢@(ky, 0, w)U(w) is random open set in X
from definition strongly dense set we have

Uken{o(—k, @)V(w) } N @k, 0_, 0)U(w) # @
Then there exists k4, k, € N such that
@ k1, 0k, w)U(w) N @(=kz, w)V(w) # @
Hence (6, @) is a strong transitivity.
In the following theorem, we will prove that (if X = I',(w) (omega-limit set) then (8, ¢) is a strong transitivity)

Theorem (2.4):

Let (6, ¢) bea RDS if X =T, (w) for every x(w) € X then (6, ) is a strong transitivity.
Proof:

assume that X =T,(w) and for every random open set as @(ky,0_ w)U(w) of X satisfy
@ k1, 0_g, ) U(W)NI(w) # P

there is x£(w) € {@(ky, 6_, @)U(@)N(w)}

we get x(w) € @(ky, 0, w)U(w) ... (1)

and let V(w) is random open set of X then V(w)NI(w) # @, for some x(w) € X.
That s, there exists k, € N such that ¢ = ¢ (k;, 0_,w)x(w) € V(w).

Thus, @k, w)™t e @k, 0_,w)x € @(ky, w)™ V().

x(w) € p(—ky, w)V () ... (2)

From (1) and (2), we have @(ky,0_, @)U(w) N @(=k;, 0)V(w) # @

hence (6, @) is a strong transitivity.

Theorem (2.5):

Let (68, @) be RDS on X, if for each a non-empty random open U(w) subset of X , there is k € N such that
Ukst @(k, 0_w) U(w) = X ,Then (0, ¢) is a strong transitivity.

Proof:
Let U(w) be non-empty random open subset of X’

Then there is k € N such that Ugss @(k, 0_j0) U(w) = X
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let o(—=k,, w)V(w) subset of X then there is Z(w) € U(w) such that
ok, 0_w) Z(w) € p(—k,, w) V(w) for some k

Then @ (ky, 0_i, w)U(w) N @(—k;, w)V(w) # @ for somekand k, € N
= (6, @) is a strong transitivity.

Theorem (2.6):

Strong Transitivity of RDS is a dynamical property.
Proof:
Let (0, ) and (6,1) be two RDS's on X and Y respectively such that (6, ¢)equivalence(8, ).

Then there exists a homeomorphism mapping g : (6,¢) — (8,9¥). We must prove that if (6, ¢) is a strong
transitivity, then (6, y) is a strong transitivity.

Let G(w) and H (w) be two open random sets of Y. From the continuity of g, we have ¢ 71 (G(w)) and ¢~ (# (w))
are two random open sets of X.

PutU(w) = ¢~ (G(w)) and V(w) = ¢~ (H (w)),

and by using definition (2.1), there is k € N such that

Pk, 0_10, ) U() N 9(—kp, 0)V(w) # O

It follows that g( @ (ky, 0_, @) U(w) N @(—kz, w)V(w)) # @. Then,
(W k1, O0_g, @)U(w) N P(=kz, 0)V(w)) # O.

By using definition (2.1) again, we have (6, ) is strong transitivity.

Theorem (2.7) :

If two RDS (04, 91), (8,2, ¢,) are strong transitive’s, then their product is a strong transitivity.
Proof:

Let (81, ¢1), (0,5, ;) are two strong transitive’s we must prove (64, @1) X (6, ¢,) is a strong transitive, now
define (0' (P) = (01' (pl) X (92' (pZ) .

Define U(wq, w,) = U; (w1) X U, (w,) where w1, w, € Q,

o(—ks, 0)V(w1, w2) = @(—kz, 0)V1(w1) X @(—k, w)V,(w;) where wy, w, € Q,
@k, 0, 0)U(wq, w3) = (p(k1,9_k1w)‘ul(a)1) X <P(k2:9—k2w)u2(w2)

Where k4, k,, € N.

We must prove ¢ (kq, 0_, @) U(wy, w2) N @(—ky, @) V(wy, w;) # 0.
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Since U;(w,),U,(w,) are two random open sets, then U(w;,w,) is a random open set also
@ (—ky, w)V;(w1), p(—k,, w)V,(w,) are two random open sets, then ¢(—k,, w)V (w4, w,) is a random open
set. since (01,¢,) is a strong transitivity, then @ (ky, 6_, @)U;(w1) N @(—k;, w)V;(w,) # @ . Also, since
(62, ) is a strong transitivity, then ¢ (k3, 0_i,w)Uz(wz) N @(—ky, w)V,(wy) # @, we get:

(p(k! g—k(‘))u(wll (‘)2) n (p(_kZ' (‘))v(le (‘)2)

= {<P(k1' 9—k1w)u1(w1) X (P(kz: 9_k2w)112 (wz)} N {p(—kz, )V, (w1) X @(=kz, w)V,(w,)}

= {p(ky, 9—k1w)u1 (w1) x ¢(k,, 9—k2w)u2 ()} A {p(—kz, w)V1(w1) X 9(—kz, 0) V5 (w2)}

= {‘P(k1'9—k1w)u1(w1) A @(—kz.w)v1(w1)} X {(p(kz,9_k2w)uz(w2)/\<p(—k2,a))Vz(a)z)}

= (P(k1:9—k1w)u1(w1) N o(=kz 0)V;(wy) X <P(k2;9—k2w)u2(w2) N @(—kz, w)V,(w2) # .

Then @(k,0_w)U(w,, w,) N p(—k,, 0)V(wq, w,) # @ and hence (6, @) is a strong transitivity.

3. strong transitivity point

In the context of random dynamical systems, strong transitivity points play a fundamental role in
understanding the ergodic and transitive behavior of trajectories. The following definition precisely specifies

the conditions required for a random variable to be a strong transitivity point of the dynamical system (8, ).

Definition (3.1): strong transitivity point

A random variable x(w) € X3 is said to be a strong transitivity point to (8, @) if its orbit ¢ (k, w) (8, w) is a
strongly dense in X .

Theorem (3.2): if some point x € X is a strong transitivity point, then (6, ¢) is a strong transitivity.
Proof:

If x(w) € X3 is a strong transitivity point and if U(w) and V(w) are non-empty random open sets of X,
there exist integers k4, k, € N with

Pk, ) 2(6),w) € U(w)

2(0, ) € p(kq,0_k, w)U(w) ...(1)

and ¢ (ky, @) (6, w) € V(w)

@(=kz, @) 0 Pk, ) 2(6),w) € Qky(—ky w) 0 V(w)
@(=ky + ky, ) 2(6r,0) € @(—kz ) V(w)

9(0,w) x(Oy,w) € @(—kz, ) V(w)

(61, 0) € ¢(=kz, ©) V(@) ... (2)

from (1) and (2) we get ¢(ky, H_kla))‘u(w) N o(=ky, w) V(w) # 0



Abbas, S. T. et al.
Journal of Global Scientific Research in Applied Mathematics and Statistics (ISSN: 2523-9376) 10 (9) 2025 4013

Jhence (8, ) is a strong transitivity.

Definition (3.3): nowhere strongly dense

X is said to be nowhere strong dense if it has an empty.
Theorem (3.4): For any RDS (6, ¢) the following statements are equivalent :
1) (6, ) is a strong transitivity.

2) if C(w) € X is a random closed set and ¢ (k, 6_,w) C(w) € C(w), then C(w) = X or C(w) is nowhere
strongly dense.

Proof: (1 = 2)

Let (6, ) is a strong transitivity for each pair of non-empty random open sets U(w), V(w) < X there is an integer
kq, k, € Z such that

@(k1,0_,0)U(W) N p(—kz, @) V(w) # @ and let €(w) € X is a random closed set and ¢ (k, 6_,w) C(w) C
C(w).

Assume C(w) # X and C(w) have a non-empty interior.

Define U(w) = X/ C(w) > U(w) is arandom open set (since C(w) is closed)
Let V(w) € C(w) be arandom open set ( since C(w) has a non-empty interior )
We have ¢(k, 0_,w)V(w) c C(w) (since p(k,0_,w) C(w) c C(w) )

(p(k, H_kla))V(a)) NU(w) = @ for every ke N

@(=kz, @) ° @(k1, 0_k,w)V(w) N p(=kz, w) o U(w) = @

o(—kz + ky, 9_k1a)) V(w) N o=k, w)U(w) =0

Let—k, +k,=kz;EZ

Therefore ¢ (ks, 0_i,w)V(@)N@(—kz, @) U(w) = @

This is a contradiction, since (6, ¢) is a strong transitivity, hence C(w) = X or C(w) is nowhere strongly
dense.

2=1

Let G(w) be a non-empty random open set in X. Suppose (8, ¢) is not strong transitivity for every non-
empty random open set in X . Then from theorem (2.3) part (2) we have Ugen{@(—k, w)U(w)} is not
strongly dense, but Uen{@(—k, w)U(w)} is random open set. Define C(w) = X/ Ugen{@(—k, w)U(w)}, then
C(w) is the random closed setof X and C(w) # X. Claim ¢(k,0_jw)C(w) € C(w). Suppose
¢ (k,0_,w) C(w) is not a subset of C(w), this implies ¢ (k, 6_,w) C(w) N Upen{o(—k, ©)U(w)} # O.

This further implies:
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ok ) e [l 0_we@ n | ] (o(-k o]

=C(w) N Ugen{io(—k, w)U(w)} #+ @, this is a contradiction to definition of C(w), thus @(k,0_,w) C(w) c
C(w). Since Ugen{@(—k, w)U(w)} is not strongly dense, there exists a non-empty random open set ¢ (—k, w)
H(w) in X such that Ugenio(—k, 0)U(w)} N @(—k, w)H (w) = @, this implies ¢(—k, w)H (w) < C(w) .
Then @(—k, w)H (w) N C(w) # @, this is a contradiction to the fact that C(w) is nowhere strongly dense, so
(6, @) is a strong transitivity.

4. Let us define strongly closed transitive random sets comprising strongly dense subsets and characterize
their association with strong transitivity phenomena.

Definition (4.1): (strongly closed transitive random sets)

Let (8, ) be RDS on X. a random closed set A subset of X is said to be a strongly transitive set if it
contains strongly dense set V# subset of A.

Theorem (4.2): If (6,¢) be RDS on X is a strong transitivity, then every random closed subset of X is a
strongly transitive set.

Proof:
Let A(w) be non-empty random closed subset of X and let V**(w) be random open subset of A (w)

Since (6, @) is a strong transitivity then ¢ (k;, 0_;, @)U(w) N o(=ky, 0)VAV(w) # @ for each non-empty
random open sets U(w) and V" (w) of X, there is kq,k, €N

Since U(w) € @(kq,0_k, w)U(w)

Then @(=k, )V (w) N U(w) # @ this means that ¢(—k, w)V*(w) is strongly dense set , hence A(w) is a
strongly transitive set.

Theorem (4.3): Let C(w)and D(w) be strongly transitive random closed sets. Then their Product
C(w) X D(w)is strongly transitive.

Proof:
Let C(w), D(w) are two strongly closed transitive random sets

since C(w) is strongly transitive random closed set, then there exists strong dense set V¢(w;) subset of
C(w) and random open U; (w;) subset of X such that

Uy (w)) N @(=k, w)VE(w,) # . where w; € Q.

Also since D(w) is strongly transitive random closed set, then there exists strong dense set V”(w,) subset of
D(w) and random open U, (w) subset of X such that

Uy (wy) N o(—=k, w)VP(w,) # @. where w, € O
Define A(w) = C(w) X D(w)

Let V/ (w4, w,) be strongly dense set of A(w) and U(w4, w,) subset of X
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Define U(wq, w;) = Uy (w1) X U, (w,) where wq, w, € Q,
VA (wq, w,) = V(w;) X VP (w,) where wy, w, € Q,
o(=k, @)V (w1, 0;) = @(=ky1, )V (01) X @(—kz, 0)VP(3)
Where k4, k,, €N
We must prove U(w;, wz) N @(—=k, 0) VA (w1, wy) # 0.
Since U; (w1), U, (w,) are two random open set then U(w,, w,) is random open set
Since V¢(w,), VP (w,) are two strongly dense set then V¥ (w4, w,) is a strongly dense set,
Then U(w,, w,) N @(—k, 0)V(wq, w5)
= {Uy(w1) X Uz (wr)} N {(P(_kp w)VE(wy) X @(—ky, (U)VD(G)Z)}
= {Us (1) X Up (@)} A {p(=ky, @IV (w1) X p(=kz, )V (w3)}
= (U (@) A @k, 0)VE (@1} X (Up(@)AP(—kg, 0)VP(@,))
= Uy (1) N@(—ky, )V (w1) X Uy (w) N @(—kz w)VP(w,) # @
Then U(w;, wy) N @(—k, )V (w,, w,) #
Hence C(w) X D(w) is a strongly transitive.

Corollary (4.4): If some point x € X is a strong transitivity point, then every random closed subset of X is a
strongly transitive set.

Proof: Assume x(w) € X3! is a strong transitivity point, then:

1. By Theorem (3.2), the system (8, ) is strongly transitive.

2. By Theorem (4.2), this implies that every random closed subset of X is a strongly transitive set.
Therefore, the conclusion follows.
Corollary (4.5): If some point x € X is a strong transitivity point, then C(w) € X is nowhere strongly dense.
Proof: Assume x(w) € X4} is a strong transitivity point, then:

1. By Theorem (3.2), the system (6, ¢) is strongly transitive.

2. By Theorem (3.4), this implies that C(w) € X is nowhere strongly dense.

Therefore, the conclusion follows.

Corollary (4.6): If some point x € X5} is a strong transitivity point, then @(—k,, ®)V(w) is a strongly dense set of
X for each non-empty random open set U(w) € X.
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Proof: Assume x(w) € X4} is a strong transitivity point, then:
3. By Theorem (3.2), the system (8, @) is strongly transitive.
4. By Theorem (2.2), this implies that ¢ (—k,, )V (w) is a strongly dense set of X.
Therefore, the conclusion follows.

Corollary (4.7): Let (6, ¢) be a RDS if X = I,(w) for every x(w) € X, then then @(—k,, w)V(w) is a strongly
dense set of X for each non-empty random open set U(w) € X.

Proof: if X = I, (w) for every x(w) € X, then:
5. By Theorem (2.4), the system (8, @) is strongly transitive.
6. By Theorem (2.2), this implies that ¢ (—k,, w)V(w) is a strongly dense set of X.
Therefore, the conclusion follows.

Corollary (4.8): Let (6,¢) be a RDS if X =T, (w) for every x(w) € X, then C(w) € X is nowhere strongly
dense.

Proof:: if X =T, (w) for every x(w) € X ,then:
7. By Theorem (2.4), the system (6, @) is strongly transitive.
8. By Theorem (3.4), this implies that C(w) € X is nowhere strongly dense.
Therefore, the conclusion follows.

Corollary (4.9): Let (8, 9) be a RDS if X =T, (w) for every x(w) € X, then every random closed subset of X is a
strongly transitive set.

Proof: : if X = I,(w) for every x(w) € X ,then:

9. By Theorem (2.4), the system (6, ¢) is strongly transitive.
10. By Theorem (4.2), this implies that every random closed subset of X is a strongly transitive set.

Therefore, the conclusion follows.
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omega-limit set strong transitivity point

\ /

strong transitivity

strongly closed
transitive random
sets

nowhere strongly

Strongly dense set dense

5. Conclusion

This work has systematically characterized strong transitivity in random dynamical systems, unifying
topological and measurable perspectives. The key outcomes reveal that:

o Strong transitivity fundamentally links to the density of system trajectories and the minimality of
asymptotic behavior, as captured through omega-limit sets.

o The property remains invariant under standard dynamical operations, including system equivalences
and products, underscoring its robustness.

o Nowhere-density of certain invariant sets emerges as a critical indicator of transitive behavior.
6. Practical Implications:

These findings enable new approaches to:

1. Modeling ergodicity in stochastic climate systems
2. Analyzing stability in financial markets with random shocks
3. Designing control strategies for noise-driven biological networks

7. Future Directions:
While the theoretical framework is now established, open challenges include:
. Extending results to non-compact state spaces

. Developing numerical verification tools
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o Exploring connections to entropy in noisy systems

This research solidifies strong transitivity as a central concept for classifying stochastic dynamics, with
potential to bridge theoretical mathematics and applied sciences.

8. Acknowledgments

We extend our sincere gratitude to the Faculty of Science and its libraries for their invaluable support in
completing and publishing this research. We deeply appreciate the administration and staff for providing the
necessary resources and an optimal research environment that contributed to the success of this work.

9. Conflicts of Interest
The authors declare no conflict of interest.

References

[1]. E. Akin, Jeffrey D. Carlson "Conceptions of topological transitivity" Mathematics Department, The City College, 137 Street
and Convent Avenue, New York, NY 10031, USA, Topology and its Applications 159, (2012).

[2]. L.Arnold "Random Dynamical Systems", Springer-Verlag Berlin Heidelberg Germany (1998).

[3]. R.B.Ash," Probability and Measure Theory", Academic Press, Inc. New York .(2000).

[4]. ]. Banks, B. Stanley , "A Note On Equivalent Definitions Of Topological Transitivity " Department of Mathematics and
Statistics La Trobe University Plenty Road Bundoora 3086, Victoria, Australia, (2014) .

[5]. L. Barreira, C. Valls, " Dynamical Systems", Universitext,, Springer-Verlag London( 2013).

[6]. A.D. Barwell "w-Limit Sets of Discrete Dynamical Systems" School of Mathematics College of Engineering and Physical
Sciences The University of Birmingham August,(2010) .

[7]. A.Barzanouni and E. Shah "Chain Transitivity for Maps on G-Spaces” Matematicki Vesnik Matematigki Vesnik 71,(2019).

[8]. I.Chueshov " Monotone Random Systems Theory and Applications" Springer- verlag Berlin Heidelberg Germany (2002).

[9]. R.Dasand M. Garg "Average Chain Transitivity and The AL Most Average Shadowing Property" Commun. Korean Math.
(2016).

[10]. R. Das and T. Das "Topological Transitivity of Uniform Limit Functions on G-spaces" Department of Mathematics, Faculty
of Science The M. S. University of Baroda, Vadodara-390002, India, Int. Journal of Math. Analysis, Vol. 6, (2012),

[11]. L. Gongfu, W. Lidong & Z. Yucheng , "Transitivity, mixing and chaos for a class of set-valued mappings" Science in China :
Series A Mathematics (2006) .

[12]. A. Kameyama " Topological Transitivity and Strong Transitivity" Acta Math. Univ. Comenianae ,(2002) .

[13]. S.Kolyada, L. Snoha, "Some aspects of topological transitivity - A survey" Institute of Mathematics, Ukrainian Academy of
Sciences Tereschenkivs’ka 3, 252601 Kiev, Ukraine (1997) .

[14]. P. Raith and A. Stachelberger , "Topological transitivity for a class of monotonic mod one transformations" Aequat. Math.
82 (2011),

[15]. Saleh, A. J. Numerical Solutions of Systems of Nonlinear Volterra Integro-Differential Equations [VIDEs] Using Block
Method. Journal of Global Scientific Research in Applied Mathematics and Statistics. 7(7); 2452-2463. (2022).



